Microstructural correlations of white matter tracts in the human brain

نویسندگان

  • Michael Wahl
  • Yi-Ou Li
  • Joshua Ng
  • Sara C. LaHue
  • Shelly R. Cooper
  • Elliott H. Sherr
  • Pratik Mukherjee
چکیده

The purpose of this study is to investigate whether specific patterns of correlation exist in diffusion tensor imaging (DTI) parameters across different white matter tracts in the normal human brain, and whether the relative strengths of these putative microstructural correlations might reflect phylogenetic and functional similarities between tracts. We performed quantitative DTI fiber tracking on 44 healthy adult volunteers to obtain tract-based measures of mean diffusivity (MD), fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) from four homologous pairs of neocortical association pathways (arcuate fasciculi, inferior fronto-occipital fasciculi, inferior longitudinal fasciculi, and uncinate fasciculi bilaterally), a homologous pair of limbic association pathways (left and right dorsal cingulum bundles), and a homologous pair of cortical-subcortical projection pathways (left and right corticospinal tracts). From the resulting inter-tract correlation matrices, we show that there are statistically significant correlations of DTI parameters between tracts, and that there are statistically significant variations among these inter-tract correlations. Furthermore, we observe that many, but by no means all, of the strongest correlations are between homologous tracts in the left and right hemispheres. Even among homologous pairs of tracts, there are wide variations in the degree of coupling. Finally, we generate a data-driven hierarchical clustering of the fiber pathways based on pairwise FA correlations to demonstrate that the neocortical association pathways tend to group separately from the limbic pathways at trend-level statistical significance, and that the projection pathways of the left and right corticospinal tracts comprise the most distant outgroup with high confidence (p<0.01). Hence, specific patterns of microstructural correlation exist between tracts and may reflect phylogenetic and functional similarities between tracts. The study of these microstructural relationships between white matter pathways might aid research on the genetic basis and on the behavioral effects of axonal connectivity, as well as provide a revealing new perspective with which to investigate neurological and psychiatric disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies

Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...

متن کامل

Differences of inter-tract correlations between neonates and children around puberty: a study based on microstructural measurements with DTI

The human brain development is a complicated yet well-organized process. Metrics derived from diffusion tensor imaging (DTI), including fractional anisotropy (FA), radial (RD), axial (AxD), and mean diffusivity (MD), have been used to noninvasively access the microstructural development of human brain white matter (WM). At birth, most of the major WM tracts are apparent but in a relatively diso...

متن کامل

The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery

Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 51 2  شماره 

صفحات  -

تاریخ انتشار 2010